
PHYSICAL REVIEW A 107, 042429 (2023)
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Recent progress in quantum signal processing (QSP) and its generalization, quantum singular value transfor-
mation, has led to a grand unification of quantum algorithms. However, inherent experimental noise in quantum
devices severely limits the length of realizable QSP sequences. We consider a model of QSP with generic
perturbative noise in the signal processing basis and present a diagrammatic notation useful for analyzing such
errors. To demonstrate our technique, we study a specific coherent error, that of under- or overrotation of the
signal processing operator parametrized by ε � 1. For this coherent error model, it is shown that while Pauli
Z errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by
coherently appending a noisy recovery QSP without the use of additional resources or ancillas. Furthermore,
through a careful accounting of errors using our diagrammatic tools, we provide an upper and lower bound on
the length of this recovery QSP operator. We anticipate that the perturbative technique and the diagrammatic
notation proposed here will facilitate future study of generic noise in QSP and quantum algorithms.
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I. INTRODUCTION

Quantum signal processing (QSP) [1,2] and its general-
ization, the quantum singular value transform (QSVT), have
provided a framework unifying many important quantum al-
gorithms [3,4]. Under this framework, Grover’s search [5,6],
the quantum Fourier transform [7] (the basis of Shor’s fac-
toring algorithm [8]), and quantum simulation algorithms
[4,9–12] are all described by interleaving sequences of block-
encoded signal rotations and single-qubit signal processing
rotations.

However, unless the QSVT operators are constructed on
top of a fault-tolerant quantum computer [13–17], inherent
experimental noise in quantum devices limits the length of re-
alizable QSP and QSVT sequences. Even with a fault-tolerant
quantum computer, errors may still arise due to inherent ap-
proximations and truncation made in constructing the block
encoding of the subsystem of interest [18,19]. These obser-
vations lead to an important question: How does one correct
errors in a typical QSVT sequence? Of course one may em-
ploy existing gate-level error correction methods to every gate
in a QSVT circuit, but the unifying perspective of representing
quantum operations as polynomial transformations offers an
entirely new possibility for studying error correction at the
level of the algorithm.
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To motivate the study of error correction at the algorithm
level, we introduce a noise model for QSP describing a
generic perturbative noise on the signal processing operation.
Our paper [20] expands on the concept of algorithm-level
error correction, using the specific coherent error of Sec. IV
as an example, and provides numerical results including an
application to a modified Grover fixed-point amplification al-
gorithm. Here we provide a full derivation of the results stated
in [20] using a diagrammatic notation and introduce a broader
class of errors where this notation is useful. This general error
model has the advantage of being able to additionally capture
incoherent errors.

The rest of the paper is organized as follows. In Sec. II we
review the QSP framework for quantum algorithms, introduce
our general error model, and set up some useful nomencla-
ture. In Sec. III we introduce our diagrammatic notation. To
demonstrate the utility of our diagrammatic notation, we in-
troduce a specific model of coherent error in Sec. IV using the
notation to construct a scheme for error recovery. We conclude
the paper with a discussion of incoherent errors and directions
for future work in Sec. V.

II. PRELIMINARIES

We start in Sec. II A with a brief review of QSP and with
a specification of the conventional choices made in this paper.
This is followed in Sec. II B with the introduction of our
model of signal processing noise. Finally, we define the error
channel in Sec. II C and introduce notation for the perturbative
decomposition of its Kraus operators in Sec. II D.
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A. Quantum signal processing

A number of conventions exist in the literature surrounding
QSP primarily differing in the choice of bases and signal
operators. We specify our choices below, which correspond
to the “Wx” convention of [4].

A length-d QSP operator is parametrized by phases �φ =
(φ0, . . . , φd ) ∈ Rd+1,

U0(θ ; �φ) = QSP(θ ; �φ) ≡ eiφ0Z
d∏

j=1

W (θ )eiφ j Z , (1)

where the signal operator is a rotation in the X basis

W (θ ) ≡ eiθX =
(

cos θ i sin θ

i sin θ cos θ

)
(2)

and X , Y , and Z are the Pauli matrices. The subscript 0 on U0 is
used to indicate that the QSP is noiseless. A general length-d
QSP sequence takes the form

U0(θ ; �φ) =
(

P(a) iQ(a)
√

1 − a2

iQ∗(a)
√

1 − a2 P∗(a)

)
, (3)

where a ≡ cos θ and P, Q ∈ C[a] are polynomials such that
(see Theorem 4 in [3]) (i) deg(P) � d and deg(Q) � d − 1,
(ii) P has parity (d mod2) and Q has parity (d − 1 mod2), and

(iii) |P(a)|2 + (1 − a)2|Q(a)|2 = 1 ∀ a ∈ [−1, 1]. We write
U = �PU , QU � as a shorthand for Eq. (3), dropping the sub-
scripts when the QSP unitary is clear by context.

B. Noise model

We consider a generic noise in the signal processing basis.
For length-d QSP with signal processing rotations indexed by
0 � j � d , the error of a single signal processing rotation
j is characterized by a set of Kraus operators {N ( j,i j )

ε } for
i j ∈ {1, . . . , Mj}, where Mj is the number of Kraus operators
describing the channel at site j. In this work we only consider
errors in the signal processing basis with Kraus operators of
the the form

N
( j,i j )
ε = w

( j,i j )
ε (φ j )I + iz

( j,i j )
ε (φ j )Z (4)

for complex functions w
( j,i j )
ε and z

( j,i j )
ε satisfying the com-

pleteness condition
∑

i j
N

( j,i j )†
ε N

( j,i j )
ε = I for all j.

Note that, in general, we allow the Kraus operators to
depend on φ j , but they are assumed to be independent of
θ . Further, to allow a perturbative analysis, we assume each
Kraus operator also depends on a parameter ε � 1 and that
all N

( j,i j )
ε approach a value proportional to identity as ε → 0.

Given input ρ, such a noisy QSP produces an output state

ρ ′
ε =

∑
i0,...,id

⎛
⎝eiφ0ZN (0,i0 )

ε

d∏
j=1

W (θ )eiφ j ZN
( j,i j )
ε

⎞
⎠

†

ρ

⎛
⎝eiφ0ZN (0,i0 )

ε

d∏
j=1

W (θ )eiφ j ZN
( j,i j )
ε

⎞
⎠, (5)

which is depicted in Fig. 1.

C. Error channel

We express the result of applying the entire noisy QSP
sequence as a channel

Uε (θ ; �φ)(ρ) = ρ ′
ε, (6)

with Kraus operators

M (i0,...,id )
ε = eiφ0ZN (0,i0 )

ε

d∏
j=1

W (θ )eiφ j Z N
( j,i j )
ε . (7)

In order to isolate the effect of the error, we define the error
channel that produces an erroneous state ρ ′

ε from the ideal
result ρ ′

0,

Eε (ρ ′
0) = Eε (U †

0 ρU0) ≡ ρ ′
ε . (8)

Combining Eqs. (6)–(8), we find that the error channel can be
written with Kraus operators

E (i0,...,id )
ε = U †

0 eiφ0ZN (0,i0 )
ε

d∏
j=1

W (θ )eiφ j ZN
( j,i j )
ε . (9)

The error channel has the benefit of being nearly the identity
channel in the perturbative regime, that is, as ε → 0, we have
E → id. As a result, all of its its Kraus operators approach a
value proportional to the identity matrix and we can write its
Kraus operators in the form

α(i0,...,id )I + εA(i0,...,id ) + O(ε2) (10)

for α ∈ R, where A is an operator of the following form.
Definition 1 (standard form, first order). We say an operator

A is in first-order standard form of degree 2d if it is written as
a weighted sum over QSP operators generated by conjugation
of ei(π/2)Z ,

A = βd × QSP(θ ; (−φd − π/2,−φd−1, . . . ,−φ2,−φ1, π, φ1, φ2, . . . , φd−1, φd ))

+ βd−1 × QSP(θ ; (−φd − π/2,−φd−1, . . . ,−φ2, π, φ2, . . . , φd−1, φd )) + · · ·
+ β1 × QSP(θ ; (−φd − π/2, π, φd )) + β0 × QSP(θ ; (π/2)). (11)

where βi ∈ R and φi ∈ R.
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FIG. 1. Tensor diagram depicting the result of (a) a noiseless
and (b) a noisy length-d QSP operator parametrized by phases
φ0, . . . , φd ∈ R on input state ρ. The noise on the signal processing
rotations is characterized by Kraus operators N

( j,i j )
ε for 0 � j � d

and is contracted over the Kraus operator index i j . In anticipation of
the notation of Sec. III, we use circles to denote signal processing
rotations and squares to denote signal rotations; additionally, pen-
tagons are used to denote Kraus operators and rectangles are used
for density matrices.

The component QSPs in the sum of Definition 1 take on a
special form.

Definition 2 (error component, first order). Let U be length-
d QSP operator parametrized by real phases (φ0, . . . , φd ).
Then a length-2r QSP V with 1 � r � d is said to be a
first-order error component of QSP U if it can be written in
the form

V =QSP(θ ; (−φd−π/2, . . . ,−φd−r+1, π, φd−r+1, . . . , φd )).

(12)

Furthermore, it is assumed that no φi for i < d is a half-
integer multiple of π ; otherwise, we can perform elision to
simplify the diagram.

A generic error channel Kraus operator is depicted in Fig. 1
using the notation of Sec. III.

D. Canonical profile

It will often be useful to write an operator in the basis of
Pauli matrices. The coordinates of noisy QSP operators in the
Pauli basis will generically be polynomials of cos θ .

Certain operators, such as the Kraus operators of noisy
QSP error channels subject to noise of the form in Eq. (4),
can be written in a special form. We say that an oper-
ator Uε (θ ) admits a canonical expansion if we can write

Uε = wε (θ )I + i[xε (θ )X + yε (θ )Y + zε (θ )Z] for functions
wε , xε , yε , and zε of the form

wε (θ ) = cos2 θ

∞∑
k=0

εk
∞∑

j=−1

P (0,k)
j cos2 j (θ ), (13)

xε (θ ) = sin(2θ )
∞∑

k=0

εk
∞∑
j=0

P (x,k)
j cos2 j (θ ), (14)

yε (θ ) = sin(2θ )
∞∑

k=0

εk
∞∑
j=0

P (y,k)
j cos2 j (θ ), (15)

zε (θ ) = cos2 θ

∞∑
k=0

εk
∞∑

j=−1

P (z,k)
j cos2 j (θ ), (16)

and P (σ,k)
j ∈ R for all σ ∈ {0, x, y, z} and j, k ∈ Z. We call P

the canonical profile of Uε . For convenience, we allow j ∈ Z
and define P (x,k)

j = P (y,k)
j = P (z,k)

j−1 = 0 for all j < 0 and k.
Our parametrization, particularly the choice of factoring

out sin(2θ ) from the X and Y components, cos2 θ from the
Z component, and starting the sum of the Z component at
j = −1, is tailored to the diagrams which appear in the
Kraus operators of QSP error channels (we leave the proof
of this to Appendix A). Note that for unitary Uε , the func-
tions satisfy the completeness relationship wε (θ )2 + xε (θ )2 +
yε (θ )2 + zε (θ )2 = 1, which holds for all θ and ε.

III. DIAGRAMMATIC NOTATION

In this section we develop a diagrammatic notation for
visualizing quantum signal processing unitaries and demon-
strate their utility for reasoning about the Kraus operators of
noisy QSP channels. First, we prove a number of results to
motivate the notation and provide a number of basic manipu-
lations.

For QSP U of length-d parametrized by �φ ≡ (φ0, . . . , φd ),
we will use �φi: j to denote the subsequence (φi, . . . , φ j ) and
U ( j) to denote the length- j QSP parametrized by �φ0: j .

Lemma 1 (unit steps). Let U0 = �P, Q� be a length-
d QSP unitary and k = deg(P) � d . The unitary U ′

0 =
U0eiφ0ZWeiφ1Z = �P′, Q′� is a length-(d + 1) QSP unitary with
either deg(P′) = k − 1 or deg(P′) = k + 1.

Proof. Computing the product, we find

P′(a) = ei(φ0+φ1 )[aP(a) − (1 − a2)Q(a)e−2iφ0 ]. (17)

Since deg(P) = k by assumption and deg(Q) = k − 1, it must
be that deg(P′) � k + 1.

Next we prove that deg(P′) � k − 1 by contra-
diction. Assume that deg(P′) = w < k − 1. We can
then iterate our construction above choosing U ′′

0 =
U ′

0e−i[φ1−(π/2)]ZWe−i[φ0−(π/2)]Z and, by the above argument,
we have deg(P′′) � w + 1 < k. However, we have
chosen the additional phases such that U ′′

0 = U0I0, where
I0 = QSP(θ ; (φ0, π/2,−φ0 + π/2)) is an unbiased operator,
i.e., I0 = I . Therefore, deg(P′′) = k. This is a contradiction
and so it must be that deg(P′) � k − 1.

Furthermore, we have that deg(P′) �= k by parity con-
straints. Therefore, Lemma 1 follows. �

Definition 3 (QSP degree peak). Let R be an unbiased QSP
sequence of length d � 2 parametrized by (φ0, . . . , φd ) ∈
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Rd+1. Suppose for some 0 < i < d we have deg(PR(i) ) = r +
1 and deg(PR(i−1) ) = deg(PR(i+1) ) = r. We will call position i a
degree peak of R.

Lemma 2 (QSP elision). Let R be a QSP operator of length
d � 2 parametrized by (φ0, . . . , φd ). Position i is a degree
peak of R if and only if φi = π (n + 1

2 ) for some n ∈ Z.
Additionally, R is equivalent to a length-(d − 2) QSP

parametrized by phases

(φ0, . . . , φi−2, φi−1 + φi + φi+1, φi+2, . . . , φd ). (18)

We refer to this transformation as QSP elision.
Proof. Writing out the product, we find the following rela-

tionship between QSP polynomials of R(i−1) and R(i):

PR(i) = aei(φi−1+φi )(PR(i−1) + e−2iφi−1 QR(i−1) ) + 
(ar−1). (19)

By assumption deg(PR(i) ) = r + 1 and therefore deg(PR(i−1) +
e−2iφi−1 QR(i−1) ) = deg(PR(i) ) − 1 = r.

Writing out the product for R(i+1), we find

PR(i+1) = 2a2 cos(φi )e
i(φi−1+φi+1 )(PR(i−1) + e−2iφi−1 QR(i−1) )

+ 
(ar ). (20)

Looking at the equation above and comparing with the PR(i) ,
we find that if deg(PR(i+1) ) = r, it must be that cos(φi) = 0 or
equivalently φi = π (n + 1

2 ) for some n ∈ Z. The converse is
also true.

Assuming φi = π (n + 1
2 ), we find

PR(i+1) = ei(φi−1+φi+φi+1 )PR(i−1) . (21)

This transformation is equivalent to a Z rotation by φi−1 +
φi + φi+1 (a length-0 QSP). We can therefore elide the orig-
inal QSP sequence by replacing the three phases φi−1, φi,
and φi+1 with a single phase φi−1 + φi + φi+1, thus proving
Lemma 2. �

A number of useful corollaries follow from Lemma 2 in-
cluding the construction of inverse QSP operators.

Corollary 1 (inverse QSPs). Let U be length-d QSP opera-
tor parametrized by phases (φ0, . . . , φd ). The length-d QSP
U ′ parametrized by (−φd + π

2 ,−φd−1, . . . ,−φ1,−φ0 − π
2 )

is the inverse QSP sequence in the sense that UU ′ = U ′U = I .
Additionally, Lemma 2 gives us the following uniqueness

result for QSP parametrization.
Corollary 2 (uniqueness of QSP parametrization). Let U =

QSP(θ ; �φ) be a length-d QSP and let V = QSP(θ ; �ψ ) be a
length-d ′ QSP. Further assume such that no phase φi or ψ j is
a half-integer multiple of π . Then U = eiχV for some global
phase χ ∈ [0, 2π ) if and only if d = d ′ and for all 0 � i � d ,
ψi − φi = πni for some ni ∈ Z. Furthermore, either χ = 0 or
χ = π .

Proof. The ⇐� direction is a straightforward conse-
quence of eiπZ = −I and so we focus on ⇒.

Since by assumption neither �φ nor �ψ contains a half-
integer multiple of π , Lemma 2 implies that neither
contains any degree peaks and therefore deg(PU ) = d and
deg(PV ) = d ′. As a result, the QSP unitaries must be of the
same length U = V ⇒ PU = PV ⇒ deg(PU ) = deg(PV ) ⇒
d = d ′. We can therefore limit our consideration to the case
of d = d ′.

Now we show that the phases must be equivalent up to
an integer multiple of π inductively. First consider the case
where d = 0. In this case, U = eiχV ⇒ eiφ0Z = eiχ eiψ0Z ⇒
φ0 = ψ0 + πn0 for some n0 ∈ Z; furthermore, χ = 0 for n0

even and χ = π for n0 odd. Thus Corollary 2 is satisfied for
d = 0.

Assuming Corollary 2 for QSP unitaries of length d ,
we show that it holds for QSP unitaries of length (d +
1). Consider QSPs U = QSP(θ ; �φ) and V = QSP(θ ; �ψ ),
each of length (d + 1) satisfying the conditions of Corol-
lary 2. Given that U = V , we reduce U to a length-d QSP
by right multiplying both sides by a QSP inverse (Corol-
lary 1) of its final signal processing step (Weiφd+1Z )−1 =
e−i[φd+1−(π/2)]ZWe−i(π/2)Z . The result is

U = V, (22)

⇒ QSP(θ ; �φ0:d+1) = QSP(θ ; �ψ0:d+1), (23)

⇒ QSP(θ ; �φ0:d+1)e−i[φd+1−(π/2)]ZWe−i(π/2)Z = QSP(θ ; �ψ0:d+1)e−i[φd+1−(π/2)]ZWe−i(π/2)Z , (24)

⇒ QSP(θ ; �φ0:d ) = QSP(θ ; {ψ0, . . . , ψd , ψd+1 − φd+1 + π/2,−π/2}). (25)

On the left-hand side of Eq. (25) is a QSP unitary of degree
d; by the inductive hypothesis, it must be the case that the QSP
unitary on the right-hand side, which is of length (d + 2),
is also of degree d . This is only possible if we can perform
elision at the next-to-last position. By Lemma 2 this requires
ψd+1 − φd+1 + π

2 = π (nd+1 + 1
2 ) for some nd+1 ∈ Z,

which implies ψd+1 − φd+1 = nd+1π . Furthermore, we
find χ ∈ {0, π} again by noting that eiπZ = −I , thus proving
the inductive step φd+1 − ψd+1 = 2πmd+1 and by extension
Corollary 2. �

We can summarize the results of this section using the
following diagrammatic notation. An example of such a plot
is given in Fig. 2 and has several notable features.

(i) Arbitrary Z rotations are represented by open cir-
cles and we use open triangles to plot QSP phases that
are a half-integer multiple of π to distinguish degree
peaks.

(ii) Closed markers, as in Figs. 4 and 5, are used to indicate
additional rotations by (π/2). Markers with checkerboard fill
are used to indicate (ε)-noisy rotations.

(iii) Signal operators are represented by solid lines.
(iv) The vertical axis is used to plot the degree of the

polynomial PU (i) at position i.
(v) By Lemma 1, each layer of signal processing either

increases or decreases the degree of the polynomial Pi(a) =
〈0|U (θ, �φ0:i ) |0〉 by exactly one.
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FIG. 2. Visualization of (a) a length-5 QSP sequence
parametrized by (φ0, . . . , φ5) and (b) its length-3 elided form
by the result of Lemma 2. We will refer to such plots in general as
QSP degree plots, often omitting the vertical axis labels to improve
legibility.

(vi) Finally, Lemma 2 provides us with a way of simplify-
ing QSP diagrams with degree peaks through elision. This is
depicted in Fig. 2.

A more involved application of elision can be found in
Fig. 3, where the diagrammatic notation is used to represent a
Kraus operator [Eq. (10)] of the error channel of Sec. II C.

IV. MODEL OF COHERENT ERROR

We consider a model of coherent errors to demonstrate the
utility of the notation for reasoning about error correction.

In this error model, we assume that the signal processing
operators under- or overrotate by a fixed multiplicative factor
ε: φ �→ φ(1 + ε) for all φ. While ε is unknown a priori, we
assume that it is constant throughout the application of the
sequence and that it is small, ε � 1, so that we may expand
errors in orders of ε. In this case, the error can be characterized
by a single Kraus operator

N ( j,1)
ε = eiεφ j Z (26)

at each site 0 � j � d . Such an error may be due to im-
perfections on the hardware control and is akin to models
of systematic error traditionally mitigated using composite
pulses [21–23].

Using the notation developed in Sec. III, we first perform
a perturbative analysis of both the error channel under this
model (Sec. IV A) and the error channel of possible recovery
operations (Sec. IV B). Next we show that the most general
form of recovery is impossible without additional resources
(Sec. IV C). Working around this constraint, we show that
a weaker form of recovery is possible and provide an ex-
plicit construction along with an upper bound on the length
of the recovered operator (Sec. IV D). Finally, allowing an
additional assumption, we argue a lower bound on the length
of recovered operator, which is tight for first-order recovery
(Sec. IV F).

This section complements our paper [20], providing the
full derivation of stated results using the notation introduced
in Sec. III. The numbering of theorems in this section is
consistent with that in [20]: Theorems 1–4 correspond to
Theorems 1–4 in [20].

A. Perturbative analysis of the error channel

For this simple model of coherent errors, the QSP error
channel can be characterized by a single unitary Kraus op-
erator, which we call its error operator Eε ≡ U †

0 Uε (we call
the canonical profile of Eε the error profile). We now perform
a perturbative analysis of the error operator under this noise
model. Expanding a noisy Z rotation in orders of ε,

eiφ(1+ε)Z = eiφZ
∞∑

k=0

εkφkei(πk/2)Z . (27)

Substituting into Eq. (1), we obtain

Uε (θ ; �φ) = QSPε (θ ; �φ) ≡
⎛
⎝eiφ0Z

∞∑
k0=0

εk0φk0 ei(π/2)k0Z

⎞
⎠ d∏

j=1

⎡
⎣W (θ )

⎛
⎝eiφ j Z

∞∑
k j=0

εk j φk j ei(π/2)k j Z

⎞
⎠

⎤
⎦. (28)

Rewriting in orders of ε,

Uε (θ ; �φ) =U0 + ε(φ0ei(φ0+π/2)ZWeiφ1ZW · · ·Weiφd Z + φ1eiφ0ZWei(φ1+π/2)ZW · · ·Weiφd Z + · · ·
+ φd eiφ0ZWeiφ1ZW · · ·Wei(φd +π/2)Z ) + O(ε2). (29)

The first-order term is a sum of d + 1 QSP unitaries, each a copy of the noiseless QSP with a π/2 overrotation at location j
weighted by φ j for each index j. Likewise, the kth-order term is a sum of (d + 1)k QSP unitaries corresponding to all possible
ways to to insert k overrotations by π

2 (including multiple overrotations at the same index).
To obtain the error operator Eε , we left multiply by U †

0 , which can be written as a noiseless QSP per the construction of
Corollary 1. Each of these sequences can be simplified using repeated application of Lemma 2. To first order, the result is

Eε = I + ε[φ0 × QSP(θ ; (−φd − π/2,−φd−1, . . . ,−φ2,−φ1, π, φ1, φ2, . . . , φd−1, φd ))

+ φ1 × QSP(θ ; (−φd − π/2,−φd−1, . . . ,−φ2, π, φ2, . . . , φd−1, φd )) + · · ·

+ φd−1 × QSP(θ ; (−φd − π/2, π, φd )) + φd × QSP(θ ; (π/2))] + O(ε2). (30)
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FIG. 3. QSP degree diagram decomposition of generic error channel Kraus operator for a length-d QSP parametrized by phases
φ0, . . . , φd ∈ R in our noise model for α ∈ R and all β j ∈ R.

Note that the first-order expansion in Eq. (30) consists of a
weighted sum of even length QSP unitaries of a special form,
which we generalize in Definition 1. Analogous calculations
show that the higher-order terms in the expansion are likewise
weighted sums over QSP unitaries of even length. Therefore,
by Corollary 4, the error operator Eε admits a canonical ex-
pansion. An example in diagrammatic form is provided for a
general length-3 QSP in Fig. 4.

B. Perturbative analysis of recovery operators

Given a noisy QSP Uε , we seek a recovery operator Rε , it-
self a noisy QSP operator, such that their product UεRε is “less
noisy” in a sense that will be defined precisely in Sec. IV D.
Since our recovery operation should leave the state unchanged
(up to a global phase) as ε → 0, we define the natural class of

degree-0 operators and perform a perturbative analysis using
the diagrammatic notation of Sec. III.

Definition 4 (degree-0 operator). We call a QSP unitary Uε

degree 0 to order k � 1 if it can be written

Uε = ei[z0+z1ε+O(ε2 )]Z+iεk{[x+O(ε)]X+[y+O(ε)]Y } (31)

for some real x, y, and z1 independent of ε but possibly func-
tions of θ , and z0 ∈ R. Additionally, we call any QSP operator
satisfying Eq. (31) for some k � 1 degree 0. Equivalently, a
QSP operator Uε is degree 0 if U0 = eiz0Z for some z0 ∈ R.

Definition 5 (unbiased operator). We call a QSP unitary Uε

unbiased to order k � 1 if it is degree 0 and U0 = I .
To this end, we study the properties of degree-0 QSP

operators and in particular the properties of their irreducible
building blocks.

FIG. 4. Diagrammatic representation of an error operator for a length-3 QSP parametrized by φi ∈ R. (a) Error operator Eε = U †
0 Uε .

Checkerboard fill indicates ε-noisy rotations (note the peak phase is only partially noisy). (b) Analysis of one term in the first-order perturbative
expansion of the error operator corresponding to an overrotation error of the φ1 phase and elided form. The location of π

2 overrotation errors is
marked by closed markers. (c) Expansion of the error operator showing all diagrams to first-order with corresponding weights.
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FIG. 5. Diagrammatic analysis of an irreducible degree-0 QSP parametrized by χ = 0, ηi ∈ R, and m ∈ Z (compare with Fig. 4).
(a) Diagrammatic representation of an irreducible degree-0 QSP Rε . A detailed analysis is performed for overrotation errors occurring at
select locations (labels 1–3) corresponding to errors at degree 2 (dashed line). Checkerboard fill indicates ε-noisy rotations. (b) Analysis of
diagrams resulting from overrotation errors at locations labeled in (a) after elision. The location of π

2 overrotation errors is marked by closed
markers. (c) Expansion of the recovery operator showing all diagrams to first order with corresponding weights. Notice that weights are integer
multiples of π/2.

Definition 6. A degree-0 QSP unitary of length d is called
irreducible if deg(P(i) ) > 0 for all 0 < i < d; otherwise a
degree-0 QSP is called reducible.

We start with the generic form of a degree-0 length-2 QSP
unitary. Due to Lemma 1, all degree-0 QSP unitaries of length
2 are irreducible. Further, the following is a consequence of
Lemma 2.

Corollary 3. A length-2 sequence QSP(θ ; (φ0, φ1, φ2)) is
degree 0 if and only if

φ0 = χ + [
φ + π

(
2m + n + 1

2

)]
, (32)

φ1 = π
(
n + 1

2

)
, (33)

φ2 = φ (34)

for some φ, χ ∈ R and n, m ∈ Z.
We can extend degree-0 QSP operations through the fol-

lowing operation.
Definition 7 (the conjugation superoperator). Given η ∈ R

and m, n ∈ Z, we use Cm,n,η to denote the superoperator that
maps a length-d sequence QSP(θ ; �φ) to

Cm,n,η QSP(θ ; �φ) ≡ e−i[η+π (2m+n+1/2)]ZWeiπ (n+1/2)Z

× QSP(θ ; �φ)WeiηZ , (35)

which is a length-(d + 2) QSP sequence with phase angles
−[η + π (2m + n + 1

2 )], π (n + 1
2 ) + φ0, φ1, . . . , φd , and η.

Note that the irreducible length-2 degree-0 QSP of Corol-
lary 3 can be written as

QSP(θ ; (φ0, φ1, φ2)) = eiχZCm,n,φI. (36)

The conjugation Cm,n,η superoperator appears naturally in our
analysis of the error operator and subsequent construction
of the recovery sequence. The effect of conjugation on an
operator’s canonical profile is detailed in Remark 3.

The conjugation operation is unique in the following sense.

Lemma 3 (decomposition of irreducible degree-0 QSP uni-
tary). An irreducible degree-0 QSP sequence R of length
d � 2 parametrized by phases �φ ∈ Rd+1 can be written as
R = eiχZCm,n,φd R′ for some χ ∈ R and m, n ∈ Z, and unbi-
ased QSP R′ of length (d − 2).

Proof. If d = 2, then R = eiχZCm,n,φ2 I for some χ ∈ R and
m, n ∈ Z by Corollary 3.

For d > 2, we proceed by repeated application of the QSP
elision operation (Lemma 2), each time reducing the length of
R by 2. In particular, since the unbiased QSP R is irreducible,
it has a degree peak at location 2 � i � d − 2. Performing
elision about position i, we are left with the length-(d − 2)
irreducible degree-0 QSP sequence. Notably, neither phases
φ0 nor φd are affected by performing elision at location
2 � i � d − 2. After d/2 − 1 elision steps, we are left with
a length-2 QSP parametrized by QSP(θ ; (φ0,

∑d−1
i=1 φi, φd )),

where by Lemma 2 we have that

d−1∑
i=1

φi = π
(
n + 1

2

)
(37)

for some n ∈ Z.
Therefore, QSP(θ, �φ1:d−1) = eiπ (n+1/2)Z or equivalently

e−iπ (n+1/2)Z QSP(θ, �φ1:d−1) = I . Thus we can rewrite the
original QSP in the desired form R = eiχZCm,n,φd R′ for χ ∈ R
and unbiased length-(d − 2) QSP R′ ≡ QSP(θ ; (φ1 − π (n +
1
2 ), φ2, . . . , φd−1)) proving Lemma 3. �

A degree-0 operator is a rotated version of its own error
operator. Therefore, Rε can be written in a form similar to that
of Definition 1. We aim to show that for the case of degree-0
Rε , these weights are additionally integer multiples of π

2 save
for the degree-0 term.

First, consider the case of irreducible degree-0 QSP R =
QSP(θ ; (φ0, . . . , φd )). Consider the contributions to the first-

order error from overrotations at the first and last positions
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(i.e., assume for now errors do not affect positions 0 < i < d).
By Lemma 3 we can write irreducible

R = eiχZCm,n,φd R′ = eiφ0ZWeiπ (n+1/2)R′Weiφd Z (38)

for R′ unbiased χ ∈ R and m, n ∈ Z. Overrotation at the
first and last positions occurs at degree 0 and therefore both
produce an degree-0 error term equivalent to ei(χ+π/2)Z and
the overall weight of the degree-0 diagram is φ0 + φd = χ −
π
2 (4m + 2n + 1). The same analysis holds for the unbiased
R′; however, φi + φd−i must be an integer multiple of π/2 for
0 < i < d by Lemma 2 and therefore the error diagram must
have weight that is an integer multiple of π/2. Furthermore,
the weights are preserved by the linearity of error profile to
first order under conjugation and product. Thus, the same
holds for higher-degree error diagrams.

Now consider a general degree-0 QSP R decomposed into
r constituent irreducible components

R = eiχ1Z J (1)eiχ2ZJ (2) · · · eiχr Z J (r), (39)

where χ1, . . . , χr ∈ R and each J ( j) is an irreducible unbiased
QSP. We can in general write a degree-0 QSP Rε up to first
order in ε as

Rε = eiχZ

[
I +

(∑
i

cie
i(π/2)Z + π

2

∑
i

diUi

)
+ O(ε2)

]
,

(40)

for χ = χ1 + · · · + χr , ci ∈ R, di ∈ Z, and QSP unitaries Ui

of even length. Additionally, each Ui is of the form

Ui = Cmi,d ,ni,d ,ηi,d · · · Cmi,1,ni,1,ηi,1 ei(π/2). (41)

A diagrammatic analysis is provided for an example length-8
irreducible degree-0 QSP in Fig. 5.

C. Z error is not correctable in general

A natural question to ask is how one should define recovery
and if it is possible, given access only to such noisy signal
processing rotations. First, we show the impossibility of the
most general form of error correction.

Theorem 1 (no correction of Z error). Let Uε be a length-d
noisy QSP unitary parametrized by (φ0, . . . , φd ) ∈ Rd+1. For
general phases φi, no noisy QSP unitary U ′

ε exists such that
for any k � 1, for all states |ψ〉,

|〈ψ |U ′
ε |ψ〉|2 = |〈ψ |U0|ψ〉|2 + O(εk+1). (42)

The condition given by Eq. (42) of Theorem 1 is equivalent
to requiring

U ′
ε = U0eiχ eiεk+1[xX+yY +zZ+O(ε)] (43)

for some global phase χ ∈ R and x, y, and z functions of θ .
We continue with a few results needed in our proof of the

impossibility result.
Lemma 4 (bottom-degree term of degree-0 QSP). Let Uε

be a degree-0 QSP with U0 = eiχZ for χ ∈ R [as required by
Eq. (43)]. Then the bottom-degree Z term in its error profile
P to first order in ε is

P (z,1)
−1 = (χ + mπ ) cos χ (44)

for some m ∈ Z.

Proof. The expansion of a general degree-0 QSP U to
first order is given by Eq. (40). Remark 3 gives us the low-
est degree Z coefficients in the canonical expansion of each
constituent diagram: The contribution to the lowest degree Z
term is given by the bottom-left component of a product of
the B matrices of Eq. (A13), which for all degree greater than
or equal to 2 diagrams is −1 and for the degree-0 diagram
ei(π/2)Z is −1. After a careful accounting of the weights, we
find that the sum from all diagrams to this lowest-degree term
is χ + mπ for m ∈ Z. Finally, the overall eiχZ rotation of the
first-order term in Eq. (40) results in an overall multiplicative
factor of cos χ on the expansion by Remark 2. Together, this
results in R(z,1)

−1 of the form required by Lemma 4. �
We are now ready to prove Theorem 1.
Proof. First we show that we cannot fully recover a

noisy length-0 QSP Uε ≡ eiφ0(1+ε)Z to first order for general
φ0 ∈ R. For full recovery, the QSP must satisfy Eq. (43)
and therefore either U ′

0 = eiφ0Z or U ′
0 = ei(φ0+π )Z = −eiφ0Z ;

therefore U ′ must be a degree-0 QSP. We see immediately
that its bottom-degree term, given by Lemma 4, cannot be
corrected in general (i.e., unless φ0 is an integer multiple
of π/2).

Now we generalize the result for QSPs of length d > 0.
For contradiction, suppose that there exists an error correction
function EC : Rd+1 → Rd ′+1 for some d ′ > d that is capable
of mapping an arbitrary length-d QSP sequence to one that
is corrected to first order. That is, suppose for any �φ ∈ Rd+1

parametrizing QSP Uε = QSPε (θ, �φ) we have �ψ = EC( �φ)
and U ′

ε = QSPε (θ, �ψ ) satisfying Eq. (43). We can simu-
late a length-0 QSP operator QSP(θ, (φ0)) by appending a
recovered length-d QSP and a recovered version of its in-
verse (Corollary 1). For concreteness, we can choose phases
�φ1, �φ2 ∈ Rd+1,

�φ1 = (−π/2, 0, . . . , 0, π/2), (45)

�φ2 = (0, . . . , 0, φ0). (46)

Let Rε = QSPε (θ, �φ1) and Sε = QSPε (θ, �φ2). Further let
�ψ1 = EC( �φ1), �ψ2 = EC( �φ2), R′

ε = QSPε (θ, �ψ1), and S′
ε =

QSPε (θ, �ψ2). Note that, by construction, R0S0 = eiφ0Z , as
desired and therefore R′

0S′
0 = eiφ0Z . Further, if both R′

ε and S′
ε

satisfy Eq. (43) for k � 1, then resulting length-2d ′ QSP R′
εS′

ε

will also be fully corrected to order k. This contradicts our
original result for d = 0 and therefore EC cannot exist for any
d � 0, thus proving Theorem 1. �

D. First-order recovery

In light of the impossibility result presented in Sec. IV C,
we shift our attention to XY error recovery. We show that it is
possible to perform this restricted form of recovery and make
use of the tools developed in Sec. IV B to provide a general
construction for XY recovery operators.

Theorem 2 (recoverability). Given any noisy QSP operator
Uε (θ ) of length d and an integer k � 1, there exists a recovery
sequence Rε (θ ) satisfying

|〈0|UεRε |0〉|2 = |〈0|U0|0〉|2 + O(εk+1) (47)

for all θ .
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The condition given by Eq. (47) of Theorem 2 is equivalent
to requiring

U ′
ε = U0ei{χ+O(ε)]Z+εk+1{[x+O(ε)]X+[y+O(ε)]Y } (48)

for some χ ∈ R and x, y, and z functions of θ .
We make the following definition in light of Eq. (48).
Definition 8 (XY equivalence). We say that two operators

U = w(θ )I + i[x(θ )X + y(θ )Y + z(θ )Z] and V = w′(θ )I +
i[x′(θ )X + y′(θ )Y + z′(θ )Z] are XY equivalent if x(θ ) =
x′(θ ) and y(θ ) = y′(θ ). We denote this by U ∼ V .

We provide an explicit construction using unbiased recov-
ery operators (i.e., R0 = I). An upper bound on the length of
the recovery operator Rε will be a corollary of our construc-
tion.

Theorem 3 (upper bound on recovery length). Given any
noisy QSP operator Uε (θ ) of length d with c distinct phases
(up to factors of 2π ) and an integer k � 1, there exists a
recovery sequence Rε (θ ) satisfying

|〈0|UεRε |0〉|2 = |〈0|U0|0〉|2 + O(εk+1) (49)

for all θ . Furthermore, there exists a QSP operator satisfying
the above with length at most O(2kck(k+1)/2d ).

To show Theorem 2, we provide an explicit construction
for Rε .

The irreducible components of our recovery operator will
be length-2r recovery operators constructed by conjugating
the identity operator. We make use of an integral degree of
freedom, namely, the freedom to overrotate by factors of 2π ,

QSPε (θ ; (−φd − π/2,−φd−1, . . . ,−φd−r+1, π/2, φd−r+1 + 2πmd−r+1, . . . , φd + 2πmd ))

= I + ε

(
− nπ

2
× QSP(θ ; (π/2))

+ 2πmd × QSP(θ ; (−φd − π/2, π, φd ))

+ 2πmd−1 × QSP(θ ; (−φd − π/2,−φd−1, π, φd−1, φd ))

...

+ nπ

2
× QSP(θ ; (−φd − π/2, . . . ,−φd−r+1, π, φd−r+1, . . . , φd ))

)

+ O(ε2) (50)

for some n ∈ Z and mi ∈ Z to be specified later.
There is a striking similarity between the error operator

expansion in Eq. (30) and the recovery component of Eq. (50)
which are visualized in Figs. 4 and 5, respectively. We take
advantage of this fact to construct our recovery operator.

To be concrete, consider a noisy QSP Uε =
QSP(θ ; (φ0, . . . , φd )). Its error operator Eε to first order
can be decomposed into a sum of even-length QSPs from
length 0, 2, . . . , 2d [Eq. (30)]. The length-2r diagram in
general is

φd−r QSP(θ ; (−φd−π/2, . . . ,−φd−r+1, π, φd−r+1, . . . , φd )).
(51)

The length-2r recovery operator of the form in Eq. (50) can
be chosen to match this by setting all mi = 0. Since canonical
profiles add to leading-order Remark 6, we can simply add an
additional π/2 shift added to the final phase φd �→ φd + π to
negate the X and Y components of the recovery operator at
first order; this can be verified using Remark 2.

The only remaining challenge is to match the φd−r weight
of the degree-2r term in Eq. (51). Here we make use of the
trigonometric identity(

sin(η + δ)
− cos(η + δ)

)
+

(
sin(η − δ)

− cos(η − δ)

)
= 2 cos(δ)

(
sin(η)

− cos(η)

)
.

(52)

By duplicating the length-2r sequence in Eq. (50) and coun-
terrotating each copy by an amount δ/2, we can construct a

sequence that is XY equivalent to a rescaled version of the
original (shown diagrammatically in Fig. 6). To fully cancel
the length-2r diagram in Eq. (51), we append two length-2r
recovery QSPs

C0,n,φd +π/2±δC0,n,φd−1 · · · C0,n,φd−r+1 I, (53)

choosing n ∈ Z such that there is a solution to δ =
1
2 cos−1( φd−r

nπ
). This can be verified using Remark 2 and is

represented diagrammatically in Fig. 6.
In summary, we have canceled the degree-2r diagram using

a length-4r QSP operator. We repeat this for each diagram of
length 2r in the first-order expansion of the error operator for
r ∈ {2, 4, . . . , 2d}; the length-0 term contributes only to the
Z component of the error, which can be ignored. Overall, the
recovery of each diagram takes a length-
(r) QSP and we
need to correct 
(d ) diagrams, resulting in a final recovery
operator of length 
(d2).

FIG. 6. Diagrammatic representations of the XY equivalence of
counterrotated diagrams.
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For a generic length-d QSP with all phases distinct, we
cannot do better using this method, as we still need to per-
form counterrotation d times. However, for a length-d QSP
operator with c distinct phases, we can group diagrams that
are scaled by the same amount; each group can be corrected
using a single length-2r diagram by appropriately choosing
mi and n. Overall, if there are c distinct phases, there will
be c distinct groups, each requiring a separate counterrotated
diagram of length 
(d ). Note that we consider phases to be
equivalent if they differ by an integer multiple of 2π as these
can be matched within the same group by an appropriate
choice of mi and n. Thus the overall complexity using this
scheme yields the improved 
(cd ) for QSP diagrams with
high phase degeneracy. As an example, the first-order recov-
ery phases for the special case of a QSP with one unique phase
are provided in Remark 10. This shows Theorems 2 and 3
for k = 1.

E. Sketch of the recovery procedure

We now provide a high-level summary of the first-order
recovery construction of the preceding sections and sketch out
the proof of Theorems 2 and 3 for k > 1.

Expanding the error operator in orders of ε, we find that
the contribution at each order can be written as a sum of QSP
operators: The first-order components are of the form Defi-
nition 2. A similar expansion shows that irreducible degree-0
operators (Definition 6) can be expanded in a similar form
except for the fact that the coefficients in a degree-0 opera-
tor’s first-order expansion must be integer multiples of π/2
whereas the coefficients in the expansion of error operators are
unconstrained. These expansions are shown diagrammatically
for error operators in Fig. 4 and irreducible degree-0 operators
in Fig. 5. A first-order recovery operator satisfying Eq. (48)
can be constructed by concatenating irreducible degree-0 op-
erators, making use of the counterrotation trick of Eq. (52) for
continuous rescaling. One counterrotation is required for each
unique phase in the original QSP with each counterrotated
unit a QSP of length 
(d ). Generically this gives a 
(d2)
first-order recovery procedure, but special cases, i.e., QSPs
with high phase degeneracies, can admit shorter recovery
operators. A QSP with c unique phases can be recovered to
first order with a recovery operator of length 
(cd ). Grover’s
algorithm is a notable example of a QSP with high phase
degeneracy (see Remark 10).

Subsequent recovery occurs order by order, making use of
the additive property of leading-order terms (Remark 6). The
higher-order expansions of both error and recovery operators
can be written in terms of the generalized error components
of Definition 9 (up to XY equivalence). Higher-order recovery
units are defined in Remark 9 in analogy with the irreducible
unbiased operators of Eq. (50) used for first-order recovery.
The fact that we use unbiased operators for recovery places
additional constraints on the coefficients of the recover opera-
tor’s expansion which may be overcome through repetition of
recovery units and judicious application of the counterrotation
trick. The key bottleneck in the required length of the recovery
sequence is again the number of required counter-rotations,
which ultimately yields the result of Theorem 3. A more

detailed analysis of the higher-order recovery construction is
left to Appendix B.

F. Lower bound

We now show that, given an additional assumption, the
length of our recovery sequence for first-order recovery is
asymptotically optimal.

Theorem 4 (lower bound on recovery length). There exists
a length-d QSP sequence Uε such that for any XY recovery
QSP Rε of order k � 1 satisfying

U †
0 UεRε = I + ε f (a)ei(π/2)Z + O(ε2)

for function f (a) = O(a0), Rε has length �(d2).
The assumption on the first-order Z component in Theorem

4 [i.e., f (a) = O(a0)] is required for technical reasons but
can also be seen as a desire to limit the complexity of the
recovery sequence. While we conjecture that this assumption
can be removed, it is important to point out that the condition
for XY recovery [Eq. (48)] does not itself place any limits on
f (a) and in fact neither the recovery construction of Sec. IV D
nor the construction of Appendix C presented satisfies this
requirement, instead having f (a) = �(d ).

First we introduce the inverse of the conjugation super-
operator of Definition 7. We denote this operation C−1

0,η such
that C−1

n,η ◦ Cm,n,η = id for all η ∈ R and m, n ∈ Z. Additional
details can be found in Remark 5.

Lemma 5 (two error components cannot be combined, first
order). Let U and V be first-order error components of degree
2r (i.e., of the form Definition 9 with all bi = 0), parametrized
by φd−r+1, . . . , φd and ψd−r+1, . . . , ψd , respectively. Their
weighted sum αU + βV for α, β ∈ R can be written as a
scaled single-error component if and only if ψi − φi = niπ

for ni ∈ Z for all d − r + 1 � i � d .
Proof. The ⇐� direction follows directly from the fact

that eiπZ = −I . For the ⇒ direction, consider that error com-
ponents are QSP operators and therefore must be unitary.
Therefore, we must have, for some c ∈ R,

(αU + βV )(αU + βV )† = (α2 + β2)I + αβ(UV † + VU †)

(54)

= (α2 + β2)I − αβ(UV + VU )

(55)

= cI, (56)

where we have used the fact that first-order error compo-
nents are unitary as well as anti-Hermitian (i.e., V −1 = V †

= −V ).
Since U and V are of the form of Definition 9, their canon-

ical expansions P and P ′ have P (0,1)
j = P ′(0,1)

j = 0 for all j
by Remark 3. Thus, in order for the final equality in Eq. (54)
to hold, we must have UV = VU = ±I or equivalently U † =
−U = ±V . The result holds by application of Corollary 2. �

We are now ready to prove Theorem 4.
Proof. Let Uε = QSP(θ ; (φ0, . . . , φd )) be a noisy QSP of

length d > 1 QSP with error operator Eε and Rε any recovery
sequence satisfying Eq. (47) for k � 1.

From Eq. (40) we see that each error component
scaled by an independent real value requires a separate
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FIG. 7. Diagrammatic representation of one anticonjugation by step in the proof of Theorem 4 for a length-d QSP. The left-hand side
depicts the first-order error terms and the right-hand side depicts a proposed set of recovery diagrams. Only the highest two degree terms in
each sequence are shown as lower-degree diagrams cannot interfere assuming sufficiently large d and f (a) = O(1). The anticonjugation by
C−1

0,φd
decreases the degree of all terms of the error operator by 2 (save for degree-0 term, which does not affect the analysis); in order for the

right-hand side to match, it must be that ηi,d = φd for all recovery diagrams i.

irreducible recovery sequence of length 
(d ). To prove Theo-
rem 4, we show that generically �(d ) independently scaled
error components are required. We argue that to approxi-
mate the first-order error operator of Eq. (30), we need a
sequence of degree 2d, 2(d − 1), 2(d − 2), . . . error com-
ponents. In fact, given the restrictive condition of f (a) =
O(a0), the only approximation is one that is identical to the
error operator up to the π degrees of freedom allowed by
Corollary 2.

Assume that we have found an approximation to first order
for an error operator of degree 2d . We proceed inductively, for
the first 
(d ) diagrams by anticonjugating, thereby reducing
the error operator to one of degree 2(d − 1), neglecting the
lowest-degree terms. Consider the first-order error terms of
both Eε and Rε written in the form of Definition 2. Anticon-
jugating the error C−1

0,φd
Eε results in all contributing diagrams

decreasing in order by 2 (save for the degree-0 diagram) as
the outermost phases of each diagram can be elided (Lemma
2). Therefore, anticonjugating the recovery operator C−1

0,φd
Rε

must likewise result in a two-degree reduction. One step of the
procedure is depicted in Fig. 7. Since by assumption the differ-
ence in the Z component is f (a) = O(a0), it cannot interfere
with the top two-degree diagrams for sufficiently large d and
the two highest-degree diagrams in R must have outermost
phase φd and be scaled by φ0 and φ1, respectively, as in
Eε . This can be seen by using Remark 5 and Lemma 5. We
can iterate this procedure 
(d ) times, before f (a) = O(a0)
becomes relevant, each time requiring the outermost phase of
φd−r+1 with scaling by φr−1.

Thus the top 
(d )-degree diagrams in the recovery oper-
ator must be identical to that in the error operator. If all φi

are distinct, 
(d ) independently scaled error components are
required, each of length 
(d ), thus showing the lower bound
of �(d2) for general length-d QSPs. �

Quantum signal processing with phase degeneracies is able
to circumvent this lower bound as in Theorem 3. This mo-
tivates the exploration of families of polynomials that can
be generated (or approximated) by QSPs with o(d ) unique
phases.

V. CONCLUSION

We have introduced a model of perturbative noise in the
signal processing basis of QSP and provided a set of diagram-
matic tools useful for reasoning about such noise. The utility
of these techniques is demonstrated by application to a model
of coherent noise, that of a multiplicative under- or overro-
tation, where we have developed and analyzed a method of
ancilla-free recovery. We now discuss some directions for
future work.

Strengthening the lower bound for the coherent error model.
Comparing Theorem 3 to Theorem 4 reveals that our con-
struction is optimal for k = 1. However, our lower bound is
independent of k and is therefore loose for k > 1 and presents
a direction for future work. An important limitation of our cur-
rent construction is the recursive construction of higher-order
recovery unitaries (Remark 9), which requires a doubling in
length for each order in k. It remains an open question whether
an order-k unbiased sequence can be constructed using subex-
ponential resources.

Closing these gaps between the upper and lower bounds
has an important implication for quantum computation, given
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FIG. 8. Example Kraus operator for the error channel of a noisy QSP with phase damping at each site. The diagram corresponds to the
Kraus operator with a phase flip at sites i and j only with 0 � i < j � d .

that even the O(d2) scaling in our construction for first-
order error correction would negate all quantum advantage
(quadratic speedup) in most fixed-point quantum unstructured
search [24].

Incoherent errors. The study of coherent errors has the
benefit that one unitary Kraus operator is sufficient to de-
scribe both the noisy signal processing rotation and the QSP
error channel; however, our formalism can also be applied to
models of incoherent error. One significant limitation in the
incoherent case is that the number of such Kraus operators
grows exponentially with d .

In the case of incoherent noise, each Kraus operator of
the error channel, rather than the error operator of Sec. IV A,
can be written in the form of Definition 1. As an example,
consider the noisy signal processing rotation corresponding to
the phase damping channel with two Kraus operators

N ( j,1)
ε = √

1 − εI, (57)

N ( j,2)
ε = √

εZ, (58)

at each site 0 � j � d . An example Kraus operator of the
error channel is shown diagrammatically in Fig. 8.

While it is already technically challenging to construct
recovery sequences given the simple coherent error model that
we consider, it is absolutely crucial in the future to analyze
the recovery sequence in the presence of an extensive source
of random errors. These random errors typically introduce
entropy into the quantum circuit and often arise in various
quantum algorithms and physical devices.

Generalizing the diagrammatic notation. To allow more
complicated error sources, including errors in the signal ba-
sis, we anticipate further development of the diagrammatic
perturbative expansion used in the present work as a formal
tool to analyze error propagation in QSP. We hope such dia-
grammatic tools can serve as a complementary picture to aid
in future development of noisy QSP recovery strategies.

Combining with standard quantum error correction.
Whereas standard quantum error correction (QEC) tech-
niques work by moving entropy into ancillary Hilbert spaces
[16,25,26], one can view our construction as rotating errors
into the Z component. The inability to correct the Z com-
ponent of error proves a limitation of our method, as the Z
error can be important for situations when the QSP sequence
needs to be coherently concatenated with another quantum
circuit [27]. However, our ancilla-free recovery technique can
be concatenated with a standard QEC code to remove the
remaining errors. For example, for incoherent errors, it may be

possible to find a recovery channel that effectively standard-
izes the error channel, e.g., transforming the error channel into
a phase damping channel; this can then be concatenated with
standard QEC codes tailored for phase damping errors. One
can envision that a combination of our ancilla-free recovery
technique with standard QEC codes would provide a tunable
trade-off between the required number of ancilla and gate
depth.
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APPENDIX A: ADDITIONAL RESULTS RELATED
TO THE CANONICAL EXPANSION

In this Appendix we demonstrate a class of operators,
namely, linear combinations of noiseless even-length QSP
unitaries, that admit the canonical expansion of Sec. II D. This
class includes the diagrammatic components of QSP error
channels, the Kraus operators studied in this paper.

Remark 1 (QSP operators of even length exhibit canonical
expansion). Let U0(θ ) = QSP(θ ; �φ) be a noiseless QSP uni-
tary of length 2d; then U0(θ ) admits a canonical expansion at
zeroth order in ε. Additionally, P (σ,k)

j = 0 for all k > 0 and
for k = 0 with σ ∈ {0, x, y, z}, and j � d .

Proof. A QSP unitary of even length 2d can be written
in the form (3) with polynomials P, Q ∈ C[a], where P has
degree at most 2d and is of even parity in cos θ and Q has
degree at most 2d − 1 and is of odd parity [3]. Writing the
polynomials as

P(cos θ ) =
d∑

j=0

p2 j cos2 j (θ ), (A1)

Q(cos θ ) =
d−1∑
j=0

q2 j+1 cos2 j+1(θ ), (A2)
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we have

w0(θ ) = Re[P(cos θ )] = cos2 θ

d−1∑
j=−1

Re(p2 j ) cos2 j (θ ), (A3)

x0(θ ) = sin θ Re[Q(cos θ )]

= sin(2θ )
d−1∑
j=0

1
2 Re(q2 j+1) cos2 j (θ ), (A4)

y0(θ ) = − sin θ Im[Q(cos θ )]

= − sin(2θ )
d−1∑
j=0

1
2 Im(q2 j+1) cos2 j (θ ), (A5)

z0(θ ) = Im[P(cos θ )] = cos2 θ

d−1∑
j=−1

Im(p2 j ) cos2 j (θ ). (A6)

This is of the desired form. �
Since the transformation from an operator to its canonical

profile is linear, we have the following corollary.
Corollary 4 (Linear combinations of QSP operators of even

length exhibit canonical expansion). If an operator A can be

decomposed into

A =
∑

i

γiUi (A7)

for γi ∈ R and QSP unitaries Ui of even length (i.e., A can
be written as a linear combination of QSP unitaries of even
length), then it admits a canonical expansion.

Next we show how the canonical expansion is transformed
under Z rotation and conjugation. It will often be convenient
to represent a canonical profile P in vector form. Assuming
P (k)

j = 0 for all j � d , we can write the entire canonical
profile as a vector in R4(d+1),

�P (k) ≡

⎛
⎜⎜⎜⎝

�P (k)
d−1
...

�P (k)
0�P (k)
−1

⎞
⎟⎟⎟⎠, (A8)

where the vector �P (k)
j ≡ (P (0,k),P (x,k)

j ,P (y,k)
j ,P (z,k)

j ).
Remark 2 (canonical expansion of Z rotation). Let Uε be an

operator admitting canonical expansion with vector form �P (k)

at order k � 0. Then Vε = eiχ0ZUεeiχ1Z for χ0, χ1 ∈ R has a
canonical profile at order k,

�P (k)′ = Oz(χ0, χ1) �P (k) ≡

⎛
⎜⎜⎜⎜⎝

Oz(χ0, χ1)
Oz(χ0, χ1)

Oz(χ0, χ1)
. . .

Oz(χ0, χ1)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�P (k)
d−1

...

�P (k)
0

�P (k)
−1

⎞
⎟⎟⎟⎟⎟⎠, (A9)

where

Oz(χ0, χ1) ≡

⎛
⎜⎜⎜⎜⎝

cos(χ0 + χ1) 0 0 − sin(χ0 + χ1)

0 cos(χ0 − χ1) sin(χ0 − χ1) 0

0 − sin(χ0 − χ1) cos(χ0 − χ1) 0

sin(χ0 + χ1) 0 0 cos(χ0 + χ1)

⎞
⎟⎟⎟⎟⎠. (A10)

We note several useful properties of the conjugation operation in the following remarks.
Remark 3 (recurrence under conjugation, first order). Given an unbiased operator Uε with functions w, x, y, and z in its

canonical expansion, the corresponding functions of conjugated operator U ′
ε = Cm,n,ηUε are given by

⎛
⎜⎜⎝

w′
x′
y′
z′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos2(θ ) 0 0 0

0 cos(2η) − cos(2θ ) sin(2η) cos2(θ ) sin(2η)

0 sin(2η) cos(2θ ) cos(2η) − cos2(θ ) cos(2η)

0 0 4 sin2(θ ) cos(2θ )

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

w

x
y
z

⎞
⎟⎟⎠. (A11)

From Eq. (A11) we can write the recurrence of the canonical profiles using a vector form of Eq. (A8). Suppose there exists
some d � 0 such that the canonical profile of Uε satisfies P (σ,1)

j = 0 for all j � d; then recurrence of the canonical profile of U ′
ε

satisfies

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�P ′(1)
d

�P ′(1)
d−1
...

�P ′(1)
0

�P ′(1)
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(η)

B(η) A(η)

B(η) A(η)
. . .

B(η) A(η)

B(η)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�P (1)
d−1

...

�P (1)
0

�P (1)
−1

⎞
⎟⎟⎟⎟⎟⎠, (A12)
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where the matrix on the right-hand side is a block-bidiagonal
matrix of size 4(d + 2) × 4(d + 1) with blocks

A(η) ≡

⎛
⎜⎜⎝

0 0 0 0
0 0 −2 sin 2η sin 2η

0 0 2 cos 2η cos 2η

0 0 −4 2

⎞
⎟⎟⎠, (A13)

B(η) ≡

⎛
⎜⎜⎝

1 0 0 0
0 cos 2η sin 2η 0
0 sin 2η − cos 2η 0
0 0 4 −1

⎞
⎟⎟⎠. (A14)

Remark 4 (linearity of conjugation). Note that conjugation
is linear. For operators U and V and coefficients α, β ∈ R,

Cm,n,η(αU + βV ) = αCm,n,ηU + βCm,n,ηV. (A15)

Similarly, we can write the effect of an anticonjugation
operation on the canonical profile.

Remark 5 (recurrence under anticonjugation, first order).
We can construct the inverse to the conjugation operation
using Corollary 1,

C−1
n,η QSP(θ ; �φ) ≡ eiπ (n+1/2)ZWeiηZ QSP(θ ; �φ)e−i(η+π/2)Z

× Wei(π/2)Z . (A16)

Letting Uε be a degree-d operator with canonical expansion
P , the canonical expansion of C−1

n,ηUε is given by P ′ of the
form (A12) with blocks

A(η) ≡

⎛
⎜⎜⎝

0 −4 sin 2η −4 cos 2η −2
0 −2 sin 2η 2 cos 2η 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (A17)

B(η) ≡

⎛
⎜⎜⎝

0 −4 sin 2η 4 cos 2η 1
0 sin 2η − cos 2η 0
0 − cos 2η − sin 2η 0
1 0 0 0

⎞
⎟⎟⎠. (A18)

Remark 6 (canonical profile of product of unbiased op-
erators, leading order). If Uε and Vε are both unbiased to
order k � 1 with canonical profiles P and Q, respectively,
then Wε = UεVε is also unbiased to order k with an canonical
profile R satisfying

R(σ,k)
j = P (σ,k)

j + Q(σ,k)
j , σ ∈ {x, y}, (A19)

R(σ,1)
j = P (σ,1)

j + Q(σ,1)
j , σ ∈ {0, z}, (A20)

for all j.
Remark 7 (equivalence of expansions of unbiased operators

to leading order). Two different expansions in ε have been
presented: The expansion in Remark 6 is performed in the
exponent (i.e., the expansion is in the Hermitian generator
of the unitary operator), while the canonical expansion is of
the unitary operator itself. These expansions do not yield the
same expansion coefficients in general; however, for unbiased
operators, the coefficients are identical to the leading order for
k � 1:

eiε[z+O(ε)]Z+iεk{[x+O(ε)]X+[y+O(ε)]Y }

= [1 + O(ε2)]I + iε[z + O(ε)]Z

+ iεk{[x + O(ε)]X + [y + O(ε)]Y }. (A21)

FIG. 9. Diagrammatic representations of Remark 8, i.e., the XY
equivalence of conjugation by π/2.

As all of our analysis will be done recursively on the leading
order, we will use these forms interchangeably.

APPENDIX B: PROOF OF THEOREMS 2 AND 3:
HIGHER-ORDER COMPONENTWISE RECOVERY

In this Appendix we generalize the first-order componen-
twise recovery construction of Sec. IV D to all orders in k.
First, we make the following observation, which is useful for
simplifying higher-order operators.

Remark 8 (π/2-rotation identity). Let V ′ be a length-2r
QSP operator parametrized by phases

(−φd − π/2, . . . ,−φi + π/2, . . . ,−φd−r+1, π, φd−r+1

+ bd−r+1π/2, . . . , φi, . . . , φd + bdπ/2), (B1)

with φi ∈ R and bi ∈ {0, 1}. Using Remarks 2 and 3, we find
that

V ′ ∼ −V (B2)

for the QSP operator V of the form of Definition 9
parametrized by phases

(−φd − π/2, . . . ,−φi, . . . ,−φd−r+1, π, φd−r+1

+ bd−r+1π/2, . . . , φi + π/2, . . . , φd + bdπ/2). (B3)

This is shown diagrammatically for an example QSP in
Fig. 9.

The preceding remark motivates the following nomencla-
ture useful in the analysis of the Kraus operators of error and
recovery channels to higher order in ε:

Definition 9 (error component). Let U be length-d QSP
operator parametrized by real phases (φ0, . . . , φd ). Then a
length-2r QSP V with 1 � r � d is said to be an error com-
ponent of QSP U if it can be written in the form

V = QSP(θ ; (−φd − π/2, . . . ,−φd−r+1, π, φd−r+1

+ bd−r+1π/2, . . . , φd + bdπ/2)), (B4)

where bi ∈ {0, 1}. Furthermore, it is assumed that no φi for
i < d is a half-integer multiple of π ; otherwise, we can per-
form elision to simplify the diagram. This is a generalization
of Definition 9.

Definition 10 (standard form, higher order). To simplify
the analysis of error and recovery operators at any order, we
generalize Definition 1 by writing the contribution at each
order as an XY -equivalent linear combination of diagrams
of the form of Definition 9. Note that the first-order analysis
presented in Sec. IV A is already in this form. For all higher
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FIG. 10. Diagrammatic representation of error terms for a representative length-3 QSP parametrized by φi ∈ R at (a) order 1, (b) order 2,
and (c) order 3. To save space, we have omitted phase labels in the expansions. Diagrams are understood to be in the form of Definition 9 with
open circles denoting bi = 0 and closed circles denoting bi = 1.

orders, this can be accomplished using repeated application of
Remark 8 and the identity eiπZ = −I , keeping track of factors
of −1.

Diagrams to order k = 3 are shown for a generic length-3
QSP in Fig. 10.

Remark 9 (constructing higher-order recovery sequences).
Let Rε and R̄ε be kth-order unbiased sequences with canonical
profiles R and R̄, respectively, with

R(σ,k)
j = −R̄(σ,k)

j (σ = x, y, z) (B5)

for all j and

R(z,k)
j = R̄(z,k′ )

j = 0 (B6)

for all j for k′ < k. Then the operator Sε ≡ RεR̄ε with canon-
ical profile S is an order-(k + 1) unbiased sequence with

S (σ,k+1)
j = R(σ,k)

j + R̄(σ,k)
j (σ = x, y, z) (B7)

for all j.
We can make use of the above observation to generate

general higher-order recovery sequences. For instance, to cre-
ate a second-order recovery sequence, we may combine two
first-order sequences. In general, this requires careful choice
of mi and n. Example recovery sequences up to order 3 are
shown in Fig. 11.

Lemma 6 (higher-order componentwise recovery). Let
U (k−1)

ε be a noisy QSP unitary XY recovered to order (k − 1),

U (k−1)
ε = U0ei[χ+O(ε)]Z+εk{[x+O(ε)]X+[y+O(ε)]Y }. (B8)
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FIG. 11. Diagrammatic analysis of expansions for representative recovery diagrams of (a) order 1, (b) order 2, and (c) order 3. As in
Fig. 10, phase labels are omitted and diagrams are understood to be in the form of Definition 9 with open circles denoting bi = 0 and closed
circles denoting bi = 1.

If U (0)
ε is of length d and with c unique phases (up to factors

of 2π ) then a recovery sequence R(k) of length 
(2kckd ) exists
to recover up to order k,

U (k−1)
ε R(k) = U0ei[χ+O(ε)]Z+εk{[x+O(ε)]X+[y+O(ε)]Y }. (B9)

Proof. The result for higher orders is similar to that for
first-order recovery. The units of recovery at order k can be
constructed using Remark 9 and are of length 
(2kd ) (exam-
ple recovery units are shown in Fig. 11).

As in the first-order case, we can correct groups of dia-
grams scaled by the same real coefficient using each recovery
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unit. In general, each recovery unit may need to be repeated a
constant number of times with different values of mi and n in
order to attain the desired integral coefficients.

The main factor bounding recovery length is the number of
distinct groups with different real coefficients. The real coeffi-
cients at order k consist of the k-tuples of the c distinct phases,
of which there are (c

k) = 
(ck ). Note that again we consider
phases equivalent if they differ only by an integer multiple
of 2π as these require only a constant number of additional
recovery units. Thus the recovery to order k can be accom-
plished using a recovery sequence of length 
(2kckd ). �

We are now ready to prove Theorem 3.
Proof. Let Uε be a length-d QSP sequence with c unique

phases with error operator Eε . We perform recovery order
by order so that we can make use of the additive prop-
erty of leading-order terms (Remark 6). At each order, from
Eq. (48), it suffices to append a sequence of relatively negative
XY -equivalent diagrams. Recovery to first order has been
shown in Sec. IV D with a sequence R(1)

ε of length 
(cd ).
After appending the first-order recovery sequence, we have

UεR(1)
ε , a length-
(cd ) QSP sequence. The key to showing

the desired scaling is to notice that this sequence has large
phase redundancy, namely, the length-
(cd ) QSP sequence
is parametrized by the same phases, except for an additional

(c) new distinct phases used in the counterrotation. Thus,
by Lemma 6, recovery to second order can be accomplished
using a recovery sequence of length 
(22 × c2 × cd ) =

(22c3d ). Recovery to order k can be accomplished using a
recovery sequence a factor 
(ck ) longer than the previous or-
der. Overall this construction requires a length O(2kck(k+1)/2d )
sequence, thus proving Theorem 3. �

We have Theorem 2 as a corollary.
Finally, we note that the scaling of the recovery length in

Theorem 3 shows that QSPs with fewer unique phases require
fewer resources for recovery. As an example, we provide an
explicit choice of recovery phases for a QSP with a single
unique phase.

Remark 10 (example for QSP with a single unique
phase). Let Uε be a length-d QSP with a single unique
phase φ (e.g., Grover search). Using this construction, we
can construct a first-order recovery operator by choosing
phases

�η1 = (−φ − π − δ,−φ, . . . ,−φ, π/2, φ + 2πm, . . . , φ + 2πm, φ + π/2 + δ), (B10)

�η2 = (−φ − 4nπ − δ,−φ, . . . ,−φ, 4nπ − π/2, φ + 2πm, . . . , φ + 2πm, φ + π/2 + δ), (B11)

�η3 = (−φ − π + δ,−φ, . . . ,−φ, π/2, φ + 2πm, . . . , φ + 2πm, φ + π/2 − δ), (B12)

�η4 = (−φ − 4nπ + δ,−φ, . . . ,−φ, 4nπ − π/2, φ + 2πm, . . . , φ + 2πm, φ + π/2 − δ), (B13)

with appropriate m, n ∈ Z and δ depending on φ. Note cru-
cially that each ellipse hides only 
(d ) phases.

Letting V (1)
ε = QSP(θ ; �η1), . . . ,V (4)

ε = QSP(θ ; �η1),
V (1)

ε V (2)
ε V (3)

ε V (4)
ε is a first-order recovery sequence for Uε .

APPENDIX C: ALTERNATE PROOF OF THEOREM 2:
DEGREEWISE RECOVERY

In this Appendix we present an alternate recovery con-
struction for the coherent error model in Sec. IV. Though
this construction is exponentially less efficient, generating a
length-
(2kd2k

) sequence, we find that it is sufficiently differ-
ent to be worth discussion. Furthermore, despite being asymp-
totically worse, it can produce shorter recovery sequences
in practice due to the large constants hidden in Lemma 6.
Whereas the construction presented performs recovery com-
ponentwise, here we perform recovery degreewise.

1. First order

We now describe our construction of the recovery sequence
that corrects the first-order error in a QSP sequence. Given a
faulty QSP sequence Uε and letting Eε be its error operator
and P its error profile, it suffices by Eq. (48) to construct a
recovery sequence Rε with an error profile R satisfying

R(σ,1)
j = −P (σ,1)

j (C1)

for σ = x, y and for all j.
The construction of Rε is recursive. In the first iteration, we

construct Rε that satisfies Eq. (C1) only at jmax, the largest j

such that P (σ,1)
j �= 0 (σ = x, y). At the end of this iteration,

the appended QSP sequence has a modified error profile P ′
such that P ′(σ,0)

j = 0 for all j � jmax, resulting in a lower jmax

for the next iteration. Repeating this procedure until P (σ,0)
j =

0 for all j, we arrive at the desired recovery sequence.
The building block for our recovery sequence is the con-

jugations in Eq. (C12). The following lemma gives the error
profile for QSP sequence that results from the conjugations.

Lemma 7 (top-degree recovery term, first order). Let R be
the length-2d QSP sequence resulting from d conjugations in
Eq. (C12) with m1 = · · · = md = 0 and n1 = · · · = nd = n.
Let R be the error profile of Rε . We have⎛

⎜⎜⎝
R(x,1)

d−1

R(y,1)
d−1

R(z,1)
d−1

⎞
⎟⎟⎠ = π22d−3(2n + 1)

d−1∏
j=1

cos2(η j )

⎛
⎜⎝ sin(2ηd )

− cos(2ηd )
2

⎞
⎟⎠.

(C2)

Proof. We prove Lemma 7 by induction. For d = 1, the
error profile of the corresponding length-2 QSP satisfies
Eq. (C2):⎛

⎜⎜⎝
R(x,1)

0

R(y,1)
0

R(z,1)
0

⎞
⎟⎟⎠ = π2−1(2n + 1)

⎛
⎜⎝ sin(2η1)

− cos(2η1)
2

⎞
⎟⎠. (C3)

Suppose Lemma 7 holds for all length-2d sequences. We will
prove that it also holds for all length-(2d + 2) sequences.
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Let R′ be a length-(2d + 2) sequence satisfying the as-
sumptions of Lemma 7 and R be a length-2d sequence
satisfying

R′ = C0,n,ηd+1 R. (C4)

Let R′ and R be the error profiles of R′
ε and Rε , respectively.

Using Eq. (A11), we have

R′(x,0)
d = sin(2ηd+1)

(
R(z,0)

d−1 − 2R(y,0)
d−1

)
, (C5)

R′(y,0)
d = − cos(2ηd+1)

(
R(z,0)

d−1 − 2R(y,0)
d−1

)
, (C6)

R′(z,0)
d = 2

(
R(z,0)

d−1 − 2R(y,0)
d−1

)
. (C7)

Applying Lemma 7 on R, we have

R(z,0)
d−1 − 2R(y,0)

d−1 = π22d−1(2n + 1)
d∏

j=1

cos2(η j ). (C8)

Therefore,⎛
⎜⎜⎝
R′(x,1)

d

R′(y,1)
d

R′(z,1)
d

⎞
⎟⎟⎠= π22d−1(2n + 1)

d∏
j=1

cos2(η j )

⎛
⎜⎝

sin(2ηd+1)

− cos(2ηd+1)

2

⎞
⎟⎠

(C9)

and Lemma 7 holds for R′. By induction, Lemma 7 holds for
length-2d QSP sequences for all d � 1. �

Also, recall from Remark 3 that R(x,1)
j = R(y,1)

j = R(z,1)
j = 0

for all j � d .
Lemma 8 (first-order degreewise recovery). Let U be a

length-d QSP sequence, Eε the error operator for U , and
P its error profile. Let jmax be the largest j such that
either P (x,1)

j �= 0 or P (y,1)
j �= 1. There exists an unbiased re-

covery sequence R such that the error profile P ′ of UεRε

satisfies

P ′(x,1)
j = P ′(y,1)

j = 0 (C10)

for all j � jmax. In addition, the length of the recovery se-
quence is at most 2( jmax + 1) if jmax � 1 and at most 4 if
jmax = 0.

Proof. First, we consider jmax � 1. Let n be the smallest
integer such that√(

P (x,1)
jmax

)2 + (
P (y,1)

jmax

)2 � π22 jmax−1
(
n + 1

2

)
. (C11)

Let R be the length-(2 jmax + 2) QSP sequence in the form

Cmd ,n,ηd · · · Cm1,n,η1 I, (C12)

with m1 = · · · = mjmax+1 = 0 and n1 = · · · = n jmax+1 = n,
and R be the error profile of Rε . By Lemma 7 we have(

R(x,1)
jmax

R(y,1)
jmax

)
= π22 jmax−1(n + 1

2

)

×
jmax∏
j=1

cos2(η j )

(
sin(2η jmax+1)

− cos(2η jmax+1)

)
. (C13)

Next we choose η1 = · · · = η jmax−1 = 0,

η jmax = cos−1

⎛
⎜⎝

√(
P (x,1)

jmax

)2 + (
P (y,1)

jmax

)2

π22 jmax−1
(
n + 1

2

)
⎞
⎟⎠

1/2

, (C14)

η jmax+1 = −1

2
tan−1

(
P (x,1)

jmax

P (y,1)
jmax

)
� 0. (C15)

Substituting these phase angles into Eq. (C13), we obtain(
R(x,1)

jmax

R(y,1)
jmax

)
= −

(
P (x,1)

jmax

P (y,1)
jmax

)
. (C16)

Thus, by Remark 6 we have Lemma 8 for jmax � 1.
Finally, we consider the case jmax = 0. Recall that for

jmax � 1 we have continuous control over the magnitude of
the error profile provided by η jmax . For jmax = 0, we use the
counterrotation trick of Eq. (52). Accordingly, we choose
η = − tan−1(P (x,1)

0 /P (y,1)
0 ) � 0 and

δη = 1

2
cos−1

⎛
⎜⎝

√(
P (x,1)

0

)2 + (
P (y,1)

0

)2

π
(
n + 1

2

)
⎞
⎟⎠ (C17)

to arrive at Eq. (C16) for jmax = 0. This concludes the proof
of Lemma 8. �

Repeatedly applying Lemma 8, we incrementally lower
jmax. When P (x,0)

j = P (y,0)
j = 0 for all j � 0, we arrive at The-

orem 2 for k = 1. Since the length of the recovery sequence in
each iteration of Lemma 7 is 2( jmax + 1) and jmax is initially
at most d − 1, the total length of the recovery sequence is at
most

4 +
d−1∑

jmax=1

2( jmax + 1) = d2 + d + 2. (C18)

Therefore, for a length-d QSP Uε , there exists recovery se-
quence Rε of length d2 + d + 2 satisfying Theorem 2 for
k = 1.

2. Higher order

We now generalize to higher orders.
First, we provide an explicit recursive construction of

higher-order unbiased sequences.
Lemma 9 (top-degree recovery term, higher order). For

all k � 1, there exists a kth-order unbiased QSP sequence of
length-(2kd ) Rε , parametrized by η1, . . . , ηd ∈ [−π, π ) and
n ∈ Z with an error profile R satisfying(

R(x,k)
d−1

R(y,k)
d−1

)
= π k22d−3(2n + 1)k

×
d−1∏
j=1

cos2(η j )

(
0 1

−1 0

)k−1(
sin(2ηd )

− cos(2ηd )

)
,

(C19)

and R(x,k−1)
j = R(y,k−1)

j = 0 for all j � d .
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Proof. We will provide a recursive construction for a
length-(2kd ) QSP satisfying Lemma 9.

Let Rε be the length-2d recovery sequence parametrized by
n ∈ Z and η1, . . . , ηd as in Lemma 7 and R its error profile.
From Lemma 9 we have(

R(x,1)
d−1

R(y,1)
d−1

)
= π22d−3(2n + 1)

×
d−1∏
j=1

cos2(η j )

(
0 1

−1 0

)0(
sin(2ηd )

− cos(2ηd )

)

(C20)

and R(x,0)
j = R(y,0)

j = 0 for all j � d . So R satisfies Lemma 9
for k = 1.

Suppose Lemma 9 holds for k � 1 and let Rε be the kth-
order unbiased QSP sequence satisfying Lemma 9. We define
R̄ε to be the QSP sequence identical to Rε except that ηd �→
ηd + π

2 and n �→ −(n + 1). Let R and R̄ be their respective
error profiles. Using Remark 9, we can show that

R(σ,k)
j = R̄(σ,k)

j (σ = x, y), (C21)

R(z,k)
j = −R̄(z,k)

j (C22)

for all j and k � 1.
Thus we we construct a sequence S using Remark 9 that is

unbiased to order k + 1 as

Sε ≡ e−iπ (n+1/2)(1+ε)Z Rεeiπ (n+1/2)(1+ε)Z R̄ε, (C23)

which is a length-(2k+1d ) QSP unitary. By the result of Re-
mark 9, the error profile S of Sε satisfies(

S (x,k)
d−1

S (y,k)
d−1

)
= π (2n + 1)

(
0 1

−1 0

)(
R(y,k−1)

d−1

R(x,k−1)
d−1

)
(C24)

= π k22d−3(2n + 1)k
d−1∏
j=1

cos2(η j )

(
0 1

−1 0

)k−1

×
(

sin(2ηd )
− cos(2ηd )

)
. (C25)

Therefore, Lemma 9 holds for k + 1 and by induction it holds
for all k. �

Lemma 10 (Higher-order degreewise recovery). Let U be a
length-d QSP sequence, Eε its error operator, and P its error
profile. Suppose Eε is unbiased to order k, that is, P (x,k′ )

j =
P (y,k′ )

j = 0 for all j � 0 and k′ < k. Let jmax be the largest

j such that either P (x,k)
j �= 0 or P (y,k)

j �= 0. There exists an
unbiased recovery sequence R such that the error profile P ′
of UεRε satisfies

P ′(x,k)
j = P ′(y,k)

j = 0 (C26)

for all j � jmax and k � 0. In addition, the length of the
recovery sequence is at most 2k+1( jmax + 1) if jmax � 1 and
at most 2k+2 if jmax = 0.

Proof. The proof of Lemma 10 is nearly identical to that
of Lemma 8. First, consider k � 1 and jmax � 1. Let n be the
smallest integer such that√(

P (x,k)
jmax

)2 + (
P (y,k)

jmax

)2 � π k22 jmax−1(2n + 1)k . (C27)

Let R be the kth-order unbiased length-2k+1( jmax + 1) QSP
sequence parametrized by η1, . . . , η jmax+1 ∈ [−π, π ) and n ∈
Z that satisfies Lemma 9 and R be its error profile. From
Lemma 9 we have⎛
⎝R(x,k)

jmax

R(y,k)
jmax

⎞
⎠ = π k22 jmax−1(2n + 1)k

×
jmax∏
j=1

cos2(η j )

(
0 1

−1 0

)k−1(
sin(2η jmax+1)

− cos(2η jmax+1)

)
.

(C28)

Next, we choose η1 = · · · = η jmax−1 = 0, n from Eq. (C27),
and

η jmax = cos−1

⎛
⎜⎝

√(
P (x,k)

jmax

)2 + (
P (y,k)

jmax

)2

π k22 jmax−1(2n + 1)k

⎞
⎟⎠

1/2

, (C29)

η jmax+1 = −1

2
tan−1

(
P (x,k)

jmax

P (y,k)
jmax

)
− 3πk

4
. (C30)

Substituting these phase angles into Eq. (C28), we obtain(
R(x,k)

jmax

R(y,k)
jmax

)
= −

(
P (x,k)

jmax

P (y,k)
jmax

)
. (C31)

From Remark 6 we have Lemma 10 for jmax � 1.
Finally, for the case jmax = 0 we again use the counter-

rotation trick of Eq. (52) setting η1 = η ± δη. We choose
η = − tan−1(P (x,0)

0 /P (y,0)
0 ) − 3πk

4 and

δη = 1

2
cos−1

⎛
⎜⎝2

√(
P (x,k)

0

)2 + (
P (y,k)

0

)2

π k (2n + 1)k

⎞
⎟⎠ (C32)

to arrive at Eq. (C31) for jmax = 0. This concludes the proof
of Lemma 10. �

This provides an alternate proof for Theorem 2.
Proof. To prove Theorem 2 in full generality for k � 1, we

repeatedly apply Lemma 10. Let R(k′ )
ε be the recovery operator

accumulated from such repeated applications for order k′.
We start by constructing R(1)

ε such that U †
0 UεR(1)

ε is unbiased
to order 2. We then increment k′, repeating the process up
to k′ = k + 1 to obtain a (k + 1)th-order unbiased operator
U †

0 UεR(1)
ε . . . R(k)

ε . We can therefore write

UεR(1)
ε · · ·R(k)

ε ≡ U0eiε[z+O(ε)]Z+iεk+1{[x+O(ε)]X+[y+O(ε)]Y },
(C33)

as required by Eq. (48), thus providing an alternate proof of
Theorem 2. �

Recalling that for k = 1, the length of the recovery op-
eration using this construction is d2 + d + 2 = 
(21d21

)
[Eq. (C18)], we note that, given a noisy QSP corrected to
order k of length dk with dk = 
(2kd2k

), we can perform
correction to the (k + 1)th order using at most dk applications
of Lemma 9 for each 0 � jmax � dk − 1. From Lemma 10,
each application adds length 2k ( jmax + 1) for jmax > 0 and
2k+1 for jmax = 0. The overall length of the resulting sequence
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therefore has length dk satisfying

dk+1 = dk + 2k+2 +
dk∑

jmax=1

2k+1( jmax + 1) = 
(2k+1d2k+1
).

(C34)

The main reason for the exponentially worse performance
compared with the construction in Appendix B is the fact that
we do not make use of the phase redundancy in the recovered
operators and thus recovery at each order is performed de
novo.

[1] G. H. Low, T. J. Yoder, and I. L. Chuang, Phys. Rev. X 6,
041067 (2016).

[2] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[3] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Proceedings of the

51st Annual ACM SIGACT Symposium on Theory of Computing,
Phoenix, 2019 (ACM, New York, 2019), pp. 193–204.

[4] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, PRX
Quantum 2, 040203 (2021).

[5] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[6] L. K. Grover, Phys. Rev. Lett. 80, 4329 (1998).
[7] D. Coppersmith, IBM Research Rep., RC–19642 (1994).
[8] P. W. Shor, Proceedings 35th Annual Symposium on Founda-

tions of Computer Science, Santa Fe, 1994 (IEEE, Piscataway,
1994), pp. 124–134.

[9] A. M. Childs and N. Wiebe, Quantum Inf. Comput. 12, 901
(2012).

[10] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, Phys.
Rev. X 11, 011020 (2021).

[11] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501
(2017).

[12] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Phys. Rev. Lett. 114, 090502 (2015).

[13] P. Shor, Proceedings of 37th Conference on Foundations of
Computer Science, Burlington, 1996 (IEEE, Piscataway, 1996),
pp. 56–65.

[14] D. Aharonov and M. Ben-Or, Proceedings of the 29th Annual
ACM Symposium on Theory of Computing (ACM, New York,
1997), pp. 176–188.

[15] E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342
(1998).

[16] J. Preskill, Proc. R. Soc. London Ser. A 454, 385 (1998).
[17] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[18] D. Camps and R. Van Beeumen, Phys. Rev. A 102, 052411

(2020).
[19] D. Camps and R. Van Beeumen, in 2022 IEEE International

Conference on Quantum Computing and Engineering (QCE),
Broomfield, CO, USA (IEEE Computer Society, Piscataway,
2022), pp. 104–113.

[20] A. K. Tan, Y. Liu, M. C. Tran, and I. L. Chuang,
arXiv:2301.08542.

[21] K. R. Brown, A. W. Harrow, and I. L. Chuang, Phys. Rev. A 70,
052318 (2004).

[22] G. H. Low, T. J. Yoder, and I. L. Chuang, Phys. Rev. A 89,
022341 (2014).

[23] M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61
(1986).

[24] T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev. Lett. 113,
210501 (2014).

[25] E. Knill and R. Laflamme, Phys. Rev. A 55, 900
(1997).

[26] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M.
Girvin, B. M. Terhal, and L. Jiang, Phys. Rev. A 97, 032346
(2018).

[27] J. M. Martyn, Y. Liu, Z. E. Chin, and I. L. Chuang, J. Chem.
Phys. 158, 024106 (2023).

042429-20

https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.80.4329
https://dl.acm.org/doi/10.5555/2481569.2481570
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1126/science.279.5349.342
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.102.052411
http://arxiv.org/abs/arXiv:2301.08542
https://doi.org/10.1103/PhysRevA.70.052318
https://doi.org/10.1103/PhysRevA.89.022341
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1063/5.0124385

